Palladium(II) Promoted O -Glycosylation Involving 1-Thio-2-enosides and 3-Thio-1-enoses

Kazuyoshi TAKEDA,* Hiroko NAKAMURA, Akira AYABE, Akira AKIYAMA, Yoshihiro HARIGAYA and Yoshihisa MIZUNO

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo,108 Japan

Abstract: O-glycosylation of thioglycosyl donors, 2,3-dideoxy-hex-1-thio-2-enopyranosides, 1,2-dideoxy-hex-3-thio-1-nopyranoses and 2-pyridyl 2,3,4,6-tetra-O-benzyl-1-thio-ß-D-glucopyranoside was achieved by use of a Pd(II) activator which was prepared from bis(acetonitrile)dichloropalladium(II)(Pd(CH₃CN)₂Cl₂) and silver triflate (AgOTf).

The structure of the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 19F bacteria has been elucidated¹⁻³ as N-acetyl- β -D-mannosamine-containing trisaccharide:

 \rightarrow 4)-β-D-ManpNAc-(1-+4)-α-D-Glcp-(1-+2)-α-L-Rhap-(1-PO₄)-+

while the group-specifc antigens of Neisseria meningitidis serogroups A and X polysaccharides have been characterized as N -acetyl- α -D-mannosamine-containing homopolymer⁴:

 \rightarrow 4)- α -D-ManpNAc-(1-PO, \rightarrow

We have been interested in the chemical construction of oligosaccharides containing N -acetyl-D-mannosamine as potential group-specific antigens. Recently, we reported the regio- and stereoselective synthesis of D-mannosamine employing a [3,3]-sigmatropic rearrangement as a key reaction from 2-enopyranoside having a 4-trichloroacetimidate group⁵. Our interest in this work stemmed from the synthesis of 2-enopyranoside-containing α -linked disaccharides which can be converted to mannosamine-containing disaccharides by use of [3,3]-sigmatropic rearrangement⁶. For this purpose, we examined a new glycosylation involving 1-thio-2-enosides A and 3-thio-1-enoses B, prepared from 3,4,6-tri-O-acetyl-D-glucal or 3,4,6-tri-O-acetyl-D-galactal and mercapto compounds, respectively. Modification of reactivity of stable 1-thioglycosides to afford reactive glycosyl donors has been achieved by use of many methods⁷. We have already reported the intramolecular glycosylation reaction employing a novel activation of 2-mercaptotetrazolyl-N-acetylneuraminic acid, i.e., a combination of Pd(CH₃CN)₂Cl₂ (II) and AgOTf, whose efficiency was shown in the case of the formation of 1,7-anhydro N - acetylneuraminic acid in cerumen of the wet type⁸.

In this communication, we wish to describe a new and efficient system for the activation of 1-thio-2-enosides $(A=1,2,3,4$ and 5) or 3-thio-1-enoses $(B=6,7$ and 8), Pd(CH₃CN₂, CL₃ - AgOTf, which gives 2-enosides (E= 12,13,14 and 15), showing that this glycosylation is highly α -selective (Scheme 1). The reaction of 1-thio-2enosides 1^9 , 2^9 , 3^{10} , 4^{11} and 5^{12} , 3-thio-1-enoses 6^{10} , 7^{10} and 8^{12} and 1-thioglucoside 9 as glycosyl donor and alcohols 10 and 11 as glycosyl acceptors was examined. As summarized in Table 1, all reactions proceeded at -20 °C ~ room temperature by the combination of Pd(CH₃CN)₂Cl₂ and AgOTf (1:1~1:2 ratios) and 4Å molecular

sieves, and disaccharides 12^{13} , 13^{14} , 14^{15} , 15^{16} , 16 and 17 were obtained in good yields. A typical glycosylation procedure is described for the reaction of 4 with 11 (run 10); to a stirred mixture of Pd(CH₃CN)₂Cl₂ $(260 \text{ mg}, 1 \text{ mmol})$ and molecular sieves 4Å (1 g) in CH₂Cl₃ (5 ml) was added AgOTf $(257 \text{ mg}, 1 \text{ mmol})$ under **argon atoruosphete at room temperatuze. After stirring for 10 min. a solution of alcohol 1 l(232 mg, 0.5 mmol}** \in **in CH,Cl, (1 ml)** and thioglycosyl donor 4 (322 mg, 1 mmol) in CH₂Cl, (1 ml) was added to the reaction **mixture. The mixture was stirred at room temperahue for 90 rnin; then the reaction mixture was neutralized with triethylamine, and insoluble materials were moved by filtration. 'Ihe filtrate was evaporated and the residue was purified by preparative TLC(AcOEt :** n **-hexane=1:4) on silica gel to give** $1.5a^{16}(288 \text{ mg}, 85\%)$ **,** $[\alpha]_0^{25}$ +62.4° (c 1, CHCl₃). The stereochemistry at C₁ in compounds 12,13,14 and 15 was assigned by **means of a NOE study of the H-l and H-5 signals in the 'H-NMR spectnm~'~. A significant NOE of 2.84, 6.9-8.8% and 6.0% was observed in compounds 128,138 and 148, respectively. On the other hand, the NOE experiments of the corresponding** $1 \cdot 2\alpha$ **,** $1 \cdot 3\alpha$ **,** $1 \cdot 4\alpha$ **and** $1 \cdot 5\alpha$ **showed no evidence of any enhancement. In** the glycosylations involving both the 1-thio-2-enosides A and 3-thio-2-enoses B , the formation of α -anomer was **predominant (runs** 1 **- 12), whik the stereochemistry of the anomeric site was not markdly affected by the anomeric** *colon* **of the donors (runs 2 and 3 1. S -Phenyl and S -pyridyl groups as S-glycosyl donors did** not make any difference in either the anomeric ratio or yields in these glycosylations (runs 1-12). Interestingly, SN²' glycosylations of 3-thiopyridyl -1-enoses 6.7 and 8 also proceeded smoothly, and α compounds were **preferentially obtained in good yields (runs 5,6,9 and 12). Further, a general glycosylation involving 1 -thioglucoside 9 proceeded by use of this activating system in good yield (runs 13- 15). 'Ike glycosylation of 9** in an acetonitrile containing dichloromethane solution exhibited a marked β -favored solvent effect compared with a dichloromethane solution (runs 13 and 14). On modification of the ratio of Pd(CH₃CN)₂Cl₂ and AgOTf, although the use of Pd(CH₃CN), Cl₂ and AgOTf in 1:1 ratio provided sufficient high reactivity for glycosylation of the 1-thio-2-enosides A or 3-thio-1-enoses B (runs 1-12), glycosylation of 1-thioglucoside 9 was faster in 1:2 ratio of Pd(CH₃CN)₂Cl₂ and AgOTf than in the 1:1 ratio (runs 13 and 14). These results imply the involvement of different active species. Further, this means that affinity of thioglycoside with the activator may be enhanced by use of a di-triflate complex (Pd(CH₂CN),Cl₂: AgOTf=1:2) (II) more than by a mono-triflate complex $(Pd(CH, CN), Cl₂$; $AgOTf=1;1)$ (I)¹⁸. These results may be attributed to the high reactivity of the oxyallylic **system of 1-thio-2enosides A or 3-thio-lenoses B than 1-thioglucoside 9 for glycosylation. Further, a**selective glycosylation of 1-thio-2-enosides A or 3-thio-1-enoses B may occur exclusively on delocalized allyloxy carbonium ions (III) resulting in higher yield of the thermodynamically favored α -anomer due to the **anomeric effect "{Scheme 2).**

In conclusion, the reagent system, $Pd(CH, CN)$, Cl_2 - AgOTf, may exert highly α -selective effect on the activation of 1-thio-2-enosides A and 3-thio-1-enoses **B**. The present method opens up new areas for the **potential exploitation of the general glycosylation reaction.**

A. 1-thio-2-enoside,

B. 3-thio-1-enose,

D. acceptor,

a) All reactions were carried out under argon atmosphere in the presence of Pd(CH₂CN₂Cl₂, AgOTf and molecularsieves 4Å. b) Corresponds to thioglycoside : acceptor : Pd(CH₃CN₂Cl₂: AgOTf. c) All new compounds were characterized by IR, ¹H-NMR (300 and 400 Mz), high resolution mass spectral analysis and elemental analysis: Details will be given in forthcoming full paper. d) Yields were based on acceptors. e) Determined by ¹H-NMR (300 and 400 Mz). f) Determined by individual isomer separation. g) Only α -products were detected. h) Activator was prepared in CH₂Cl₂ solution.

References **and** notes

- 1) H. J. Jennings, Adv. Carbohydr. Chem. Biochem., 41, 155 (1983).
- 2) N. Ono, T. Yadomae and T. Miyazaki, Carbohydr. Res., 80, 297 (1980).
- 3) H. J. Jennings, K. G. Rossel and D. J. Carlo, Can. J. Chem.. 5%. 1069 (1980).
- 4) D. R. Bundle, I. C. P. Smith and H. J. Jennings, J. Biol.Chem., 249, 2275 (1974).
- 5) K. Takeda, E. Kaji, Y. Konda, N. Sato, H. Nakamura, N.Miya, A. Morizane, Y. Yanagisawa, A. Akiyama, S. Zen and Y. Harigaya, Tetrahedron Lett., 33, 7145 (1992).
- 6) For the synthesis of mannosamine-containing disaccharide: K. Takeda, H. Nakamura, A. Akiyama, A. Ito, Y. Konda, A. Kaji, S. Zen and Y.Harigaya, The 113 th Annual Meeting of the Pharmaceutical Society of Japan, Osaka. March, 1993. Abstracts of papers, II, p.77. Details on these results will be reported in the near future.
- 7) Reviews: P. Fugedi, P. J. Garegg, H. Lonn, T. Norberg, Glycoconjugate J. 4, 97 (1987), P. Sinay, Pure & Appl. Chem., 63, 519 (1991). and cited references.
- 8) K. Furuhata, K. Takeda and H. Ogura, *Chem. Pharm. Bull.*, 39, 817 (1991).
- 9) S. Valverde. S. **C-Ochoa** and **M.** M-Lomss, J. Chem. Sot., Chem. Commun.. 1987, 383.
- 10) Compounds 3,6 and 7 were synthesized by the reaction of 3,4,6-tri-O-acetyl-D-glucal with 1.1 equiv. of 2-mercaptopyridine in the presence of 1.1 equv. of SnCl₄ in CH₂Cl₂ for 20 min at room temperature.(yield; 3, 25%. 6, 37%. 7, 29%). On the other hand, the reaction of 3,4,6-tri-O-acetyl-D-glucal with 1.5 equiv. of 2-mercaptopyridine in the presence of 1.5 equv. of SnCl, gave only compound 3 (69 %) in CH₂Cl₂ for 3 hr at -20 U. 3; $[\alpha]_D^{\infty}$ +364.3° (c 0.46, CHCl₃), 'H-NMR(CDCl₃,300M 4.28(C₃-H, dt, J = 5.0, 8.5 Hz, 1H), 5.42(C₄-H, ddt, J=2.0, 2.5, 8.5 Hz, 1H), 5.90(C₃-H, ddd, J=1.5, 2.0, 10.0 Hz, 1H), 6.09 $(C_2-H, \text{ ddd, } J=2.0, 3.0, 10.0, 1H)$, $6.61(C_1-H, \text{ ddd, } J=1.5, 2.5, 3.0 Hz, 1H)$. 6 ; $[\alpha]_0^{\infty}+135.2^{\circ}$ $(c~0.63, \text{ CHCl}_3)$, 'H-NMR (CDCl₃,300Mz) 4.30(C₃-H, ddd, J=2.0, 5.0, 10.0 Hz, 1H), 4.92(C₂-H, t, J=6.0, 1H), 5.10(C₃-H, ddd, J=1.0, 4.5, 6.0 Hz, 1H),
5.38(C₄-H, dd, J=4.5, 10.0 Hz, 1H), 6.43(C₁-H, dd,J=1.0, 6.0 Hz, 1H). 7; [α]_D²⁴+ 300Mx)4.20(C,-H,dd4J=2.5,6.5, 7.5 Hxz.lH), 4.77(C,-H,c&lJ=2.0, 3.0, 7.0Hz, lH),4.92(Cz-H, a *Jz3.0, 6.OH2,* 1H). $5.32(C_4-H, dd, J=7.0, 7.5 Hz, 1H), 6.43(C_1-H, dd, J=2.0, 6.0 Hz, 1H).$
- 11) R. L. Halcomb, M. D. Wittman, S. H. Olson and S. J. Danishefsky, J. Amer. Chem. Soc., 113, 5080(1991).
- 12) Compounds 5 and 8 were synthesized by the reaction of 3,4,6-tri-O-acetyl-D-galactal with 1.2 equiv. of 2-mercaptopyridine in the presence of 1.5 equv. of SnCl₄ in CH₂Cl₂ at 0 \degree -room temperature for 24 hr. (yield; 5, 15%, 8, 65%, starting material, 6%). On the other hand, the reaction of 3,4,6-tri-O-acetyl-D-galactal with 1.1 equiv.of 2-mercaptopyridine in the presence of 1.0 equiv. of SnCl₄ gave 24% of 5, a trace of 8 and 63% of starting material in CH₂Cl₂ for 5 hr at -20 °C, while compound 8 was obtained in 59% yield as a single product by use of 1.5 equiv. of 2-mercaptopyridine and 2.0 equiv. of SnCl₄ at room temperature. 5; $15\%, [\alpha]_{D}^{\sim}$ +64.7 (c 0.17, CHCl₃), 'H-NMR(CDCl₃,300Mz) 4.53(C₅-H, ckkl, J=2.5, 6.0, 7.0 Hz, 1H), 5.13 **G-H, dd 5=2.5, 5.0 Hz,** 1H). 6.14(C,-H, ck.H J=l.5,5.0. 10.0 Hz. lH), 6.24(Cr-H, &l J~3.5, **10.0 Hz,** lH), 6.70(C,-H, d& $J=1.5$, 3.5 Hz, 1H). 8; 65%,[α] $_D^{\infty}$ +54.5° (c 1.02, CHCl3), 'H-NMR(CDCl3,300Mz) 4.42(C₃-H, br.dd, $J=1.0$, 1.5, 5.0 Hz, 1H), 4.44(C₅-H, dtld, J<1, J=4.5, 7.5 Hz, 1H), 4.86(C₂-H, dtld, J=2.0, 5.0, 6.0 Hz, 1H), 5.22(C₄-H, dtld, J<1, J=1.5, 2.0 Hz, 1H), $6.60(C_1-H, dt, J=1.0, 6.0 Hz, 1H).$
- 13) **1 2** α ; [α]_D²⁴+52.8° (c 0.33, CHCl₃), ¹H-NMR(CDCl₃,400Mz) 4.02(C₅-H, ddd, J=2.0, 5.0, 9.0 Hz, 1H), 5.11(C₁-H, t, J=1.0 Hz, lH), 5.30(C₄-H, dt, J=1.0, 9.0 Hz, 1H), 5.84(C₂-H, dt, J=1.0, 10.0 Hz, 1H), 5.87(C₃-H,dt, J=1.0, 10.0 Hz, 1H). **12β**;
[α |_n²³+78.2 ° (c 0.55, CHCl₃), ¹H-NMR(CDCl₃,400Mz) 3.96(C₃-H, dt, J=4.0, 6.0 Hz, 1H) [α]_n²³+78.2 α (c 0.55, CHCl₃), ¹H-NMR(CDCl₃,400Mz) 3.96(C₃-H, dt, J=4.0, 6.0 Hz, 1H), 5.07(C₁-H, q,J=1.5 Hz, 1H), 5.18 $(C_4$ -H, ddt, J=1.5, 3.5, 6.0 Hz, 1H), 5.84 $(C_2$ -H, dt, J=1.5, 10.5 Hz, 1H), 5.94 $(C_3$ -H, ddd, J=1.5, 3.5, 10.5 Hz, 1H).
- 14) $1\overline{3}\alpha$; $[\alpha]_D^2$ +53.3° (c 0.9, CHCl₃), ¹H-NMR(CDCl₃,400Mz) 3.76(C₃-H, ddd, J=3.0, 5.0, 9.5 Hz, 1H), 5.21(C₄-H, dd, J=2.5, 9.5 Hz, 1H), 5.47(C₁-H, dd, J=2.5, 3.0 Hz, 1H), 5.51(C₃-H, ddd, J=2.5, 3.0, 10.0Hz, 1H), 5.77(C₂-H, dd, J=2.5, 10.0 Hz, 1H). **13** β ; $[\alpha]_D^2$ +59.0" (c 0.19, CHCl₃), 'H-NMR(CDCl₃,300Mz) 3.80(C₅-H, ddd, J=4.0, 5.5, 7.5 Hz, 1H), 5.20(C₄-H, ddt, J=1.5, 2.5, 7.5 Hz, IH), 5.32(C₁-H, q, J=1.5, 1H), 5.65(C₂-H, dt, J=1.5, 10.0 Hz, 1H), 5.77(C₃-H, ddd, J=1.5, 2.5, 10.0 Hz, 1H).
- $15)$ 1 4 α ; [α]_p⁻²-63.8' (c 0.21, CHCl₃), 'H-NMR(CDCl₃,300Mz) 4.29(C₅-H, ddd, J=2.5, 5.5, 7.5 Hz, 1H), 5.00(C₄-H, dd, J=2.5 **5.0** Hz, lH), 5.15(C,-H,d,J=2.5 Hz, lH), 6.04(C,-H,cki,J=2.5, 10.0 Hz, IH), 6.lO(Cr-H. &i,J=5.0, 10.0 Hz. IH), **14Br,** $[\alpha]_D^{24}$ -56.6" (c 0.35, CHCl₃), 'H-NMR(CDCl₃, 400Mz) 4.00(C₃-H, dt, J=3.0, 6.5 Hz, 1H), 5.06(C₄-H, dddd, J=1.0, 2.0, 3.0, 4.5 Hz, lH), 5.lO(C,-H. dt, Jxl.0, 2.0 Hz, 1H). 5.91(C,-H. dt,J=l.O. 10.5 Hz. lH), 6.07(C,-H, d&l Jz1.0.4.5, **10.5 Hz,** 1H).
- $16)$ 15α ; $\left(\alpha\right)_D$ ²+62.4" (c1, CHCl₃), 'H-NMR(CDCl₃,400Mz) 4.06-4.10(C₅-H, m, 1H), 4.91(C₄-H, br.d, J=5.5 Hz, 1H), 5.50 **(C,-H. &Iv** *J=l.O, 3.0* Hz, 1H). 5.69(&-H. &i, J=3.0, 10.0 Hz, 1H). 6_OO(G-H. &id, J=l.O, 5.5. 10.0 Hz, 1H).
- 17) S. Danishefsky, J. F. Kerwin, Jr., J. Org. Chem., 47, 3803 (1982).
- 18) It has been reported that palladium tetrafluoroborate complex or palladium triflate complex is prepared in situ from dichloropalladium complex and two molar equivalents of silver tetrafluoroborate or silver triflate, respectively. Palladium tetrafluoroborate complex; M-F. Hirai, M. Miyasaka, K. Itoh, Y. Ishii, J. Organometal. Chem., 165, 391 (1979), Palladium triflate complex; T. Mukaiyama, M. Ohshima and T. Nakatsuka, Chem Lett., 1983, 1207.
- 19) B. **Fraser-Reid,** Act. Chem. Res., 8, 192 (1975).

(Received in Japan 19 *June 1993; accepted 30 July 1993)*